中文核心期刊
CSCD來源期刊(核心庫)
中國科技核心期刊
RCCSE中國核心學術期刊
JST China 收錄期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

鈣鈦礦LaBO3催化過氧乙酸降解水中雙酚A機制研究

趙瑩 劉晴靚 王碩 孫志強 馬軍

趙瑩, 劉晴靚, 王碩, 孫志強, 馬軍. 鈣鈦礦LaBO3催化過氧乙酸降解水中雙酚A機制研究[J]. 環境工程, 2023, 41(12): 1-10. doi: 10.13205/j.hjgc.202312001
引用本文: 趙瑩, 劉晴靚, 王碩, 孫志強, 馬軍. 鈣鈦礦LaBO3催化過氧乙酸降解水中雙酚A機制研究[J]. 環境工程, 2023, 41(12): 1-10. doi: 10.13205/j.hjgc.202312001
ZHAO Ying, LIU Qingliang, WANG Shuo, SUN Zhiqiang, MA Jun. MECHANISM OF PEROVSKITE LaBO3 CATALYZED PEROXYACETIC ACID DEGRADATION OF BISPHENOL A IN WATER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 1-10. doi: 10.13205/j.hjgc.202312001
Citation: ZHAO Ying, LIU Qingliang, WANG Shuo, SUN Zhiqiang, MA Jun. MECHANISM OF PEROVSKITE LaBO3 CATALYZED PEROXYACETIC ACID DEGRADATION OF BISPHENOL A IN WATER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 1-10. doi: 10.13205/j.hjgc.202312001

鈣鈦礦LaBO3催化過氧乙酸降解水中雙酚A機制研究

doi: 10.13205/j.hjgc.202312001
基金項目: 

國家自然科學基金"基于過渡金屬單原子活性中心設計定向調控過一硫酸鹽對水中內分泌干擾物的降解機制"(52200010)

詳細信息
    作者簡介:

    趙瑩(1994-),女,博士后,主要研究方向為水處理高級氧化技術。yzhao16@hit.edu.cn

    通訊作者:

    孫志強(1991-),男,副教授,主要研究方向為飲用水安全保障技術。sunhit@hit.edu.cn

    馬軍(1962-),男,中國工程院院士,教授,主要研究方向為飲用水安全保障技術。majun@hit.edu.cn

MECHANISM OF PEROVSKITE LaBO3 CATALYZED PEROXYACETIC ACID DEGRADATION OF BISPHENOL A IN WATER

  • 摘要: 為高效去除水中內分泌干擾物類污染物,采用溶膠-凝膠法合成鈣鈦礦LaBO3(B=Fe、Cr、Co)催化劑,用于催化過氧乙酸(PAA)降解水中雙酚A(BPA)。采用TG-DSC、SEM、TEM、XRD等方法對鈣鈦礦LaBO3催化劑形貌及微觀結構進行表征,研究其在不同條件下催化PAA去除BPA的效果,并提出催化PAA反應機制。結果表明:LaBO3(B=Fe、Cr、Co)為大小不一、表面光滑、團聚的不規則球體,比表面積為11.89 m2/g。研究條件下,LaCoO3/PAA體系對BPA的降解率高達85%,顯著高于LaCrO3/PAA(14%)和LaFeO3/PAA(14%)體系。此外,LaCoO3/PAA體系對其他污染物(金橙Ⅰ、磺胺甲噁唑、4-氯苯酚)亦展現出良好的降解效果,并且對水中常見的無機陰離子和腐殖酸具有較強的抗干擾能力,使LaCoO3成為一種有發展前景的環境友好型催化劑。采用淬滅實驗和電子自旋共振光譜揭示了有機自由基是LaCoO3/PAA體系導致BPA降解的主要活性物種。直接電子轉移途徑為LaCoO3/PAA體系催化降解BPA的次要氧化途徑。此外,≡Co/≡Co的氧化還原對與PAA之間的氧化還原反應確保了自由基的連續生成和較高的降解效能。該研究工作可為水中內分泌干擾物污染治理提供新的思路。
  • [1] 尤洋,夏青,李文攀,等.建設項目中常見的內分泌干擾物的污染和控制建議[J].中國環境監測,2018,2:57-63.
    [2] 黃苑,張維,王瑞國,等.雙酚類化合物污染現狀和內分泌干擾效應研究進展[J].生態毒理學報,2022,17(1):60-81.
    [3] DA SILVA W P, CARLOS T D, CAVALLINI G S, et al. Peracetic acid: structural elucidation for applications in wastewater treatment[J]. Water Research,2020,168:115143.
    [4] LUUKKONEN T, HEYNINCK T, RÄMÖ J, et al. Comparison of organic peracids in wastewater treatment: disinfection, oxidation and corrosion[J]. Water Research,2015,85:275-285.
    [5] WANG Z, WANG J, XIONG B, et al. Application of cobalt/peracetic acid to degrade sulfamethoxazole at neutral condition: efficiency and mechanisms. Environmental Science & Technology,2020,54:464-475.
    [6] KIM J, ZHANG T, LIU W, et al. Advanced oxidation process with peracetic acid and Fe(Ⅱ) for contaminant degradation[J]. Environmental Science & Technology,2019,53:13312-13322.
    [7] LIANG P, MENG D, LIANG Y, et al. Cation deficiency tuned LaCoO3-δ perovskite for peroxymonosulfate activation towards bisphenol a degradation[J]. Chemical Engineering Journal,2021,409:128196.
    [8] MANOS D, MISERLI K, KONSTANTINOU I. Perovskite and spinel catalysts for sulfate radical-based advanced oxidation of organic pollutants in water and wastewater systems[J]. Catalysts,2020,10(11):1299.
    [9] CHEN C, ZHOU J, GENG J, et al. Perovskite LaNiO3/TiO2 step-scheme heterojunction with enhanced photocatalytic activity[J]. Applied Surface Science,2020,503:144287.
    [10] ZHOU X, WU H, ZHANG L, et al. Activation of peracetic acid with lanthanum cobaltite perovskite for sulfamethoxazole degradation under a neutral pH: the contribution of organic radicals[J]. Molecules,2020,25(12):2725.
    [11] ZHAO X, ZHANG T, ZHOU Y, et al. Preparation of peracetic acid from hydrogen peroxide: Part Ⅰ: kinetics for peracetic acid synthesis and hydrolysis[J]. Journal of Molecular Catalysis A: Chemical,2007,271:246-252.
    [12] PENG Z, LIANG P, WANG X, et al. Copper cadmium titanate prepared by different methods: phase formation, dielectric properties and relaxor behaviors[J]. Ceramics International,2018,44(7):7814-7823.
    [13] ZHUANG S, LIU Y, ZENG S, et al. A modified sol-gel method for low-temperature synthesis of homogeneous nanoporous La1-xSrxMnO3 with large specific surface area[J]. Journal of Sol-Gel Science and Technology,2016,77(1):109-118.
    [14] CHEN S, CAI M, LIU Y, et al. Effects of water matrices on the degradation of naproxen by reactive radicals in the UV/peracetic acid process[J]. Water Research,2019,150:153-161.
    [15] LIU B, GUO W, JIA W, et al. Insights into the oxidation of organic contaminants by Co(Ⅱ) activated peracetic acid: the overlooked role of high-valent cobalt-oxo species[J]. Water Research,2021,201:117313.
    [16] DENG J, WANG H, FU Y, et al. Phosphate-induced activation of peracetic acid for diclofenac degradation: kinetics, influence factors and mechanism[J]. Chemosphere,2022,287:132396.
    [17] YAO K, FANG L, LIAO P, et al. Ultrasound-activated peracetic acid to degrade tetracycline hydrochloride: efficiency and mechanism[J]. Separation and Purification Technology,2023,306:122635.
    [18] WANG J, XIONG B, MIAO L, et al. Applying a novel advanced oxidation process of activated peracetic acid by CoFe2O4 to efficiently degrade sulfamethoxazole[J]. Applied Catalysis B: Environmental,2021,280:119422.
    [19] ZHANG L, CHEN J, ZHENG T, et al. Co-Mn spinel oxides trigger peracetic acid activation for ultrafast degradation of sulfonamide antibiotics: unveiling critical role of Mn species in boosting Co activity[J]. Water Research,2023,229:119462.
    [20] KONG D, ZHAO Y, FAN X, et al. Reduced graphene oxide triggers peracetic acid activation for robust removal of micropollutants: the role of electron transfer[J]. Environmental Science & Technology,2022,56(16):11707-11717.
    [21] HAMMOUDA S B, ZHAO F, SAFAEI Z, et al. Degradation and mineralization of phenol in aqueous medium by heterogeneous monopersulfate activation on nanostructured cobalt based-perovskite catalysts ACoO3 (A=La, Ba, Sr and Ce): characterization, kinetics and mechanism study[J]. Applied Catalysis B: Environmental,2017,215:60-73.
    [22] WANG Y, JI H, LIU W, et al. Novel CuCo2O4 composite spinel with a meso-macroporous nanosheet structure for sulfate radical formation and benzophenone-4 degradation: interface reaction, degradation pathway, and DFT calculation[J]. ACS Applied Materials & Interfaces, 2020, 12(18):20522-20535.
    [23] ZENG W, YIN Z, GAO M, et al. In-situ growth of magnesium peroxide on the edge of magnesium oxide nanosheets: ultrahigh photocatalytic efficiency based on synergistic catalysis[J]. Journal of Colloid and Interface Science,2020,561:257-264.
  • 加載中
計量
  • 文章訪問數:  36
  • HTML全文瀏覽量:  4
  • PDF下載量:  6
  • 被引次數: 0
出版歷程
  • 收稿日期:  2023-09-28
  • 網絡出版日期:  2024-03-08

目錄

    /

    返回文章
    返回
    国产99999在线精品