RESILIENCE EVALUATION OF URBAN RAINWATER DRAINAGE SYSTEM IN PLAIN RIVER NETWORK AREA
-
摘要: 隨著城市化高速發展,城市排水和內澇的壓力日益增大,增強雨水排水系統的"彈性"是城市發展的方向。選擇長江三角洲某平原河網城市的某片區為研究對象,基于率定的SWMM模型和已有的研究,從系統內澇積水量和持續時間2個方面的彈性出發,建立雨水排水系統彈性模型。在不同降雨情境下運行模型,分析研究區域的雨水排水系統彈性。結果表明,隨著降雨強度增加,系統彈性逐漸減小;系統彈性值和降雨強度之間呈線性負相關。在低重現期條件下,隨著降雨強度的增大,彈性值下降幅度較小。重現期越大,系統彈性值下降速率越快。在同一降雨重現期下,隨著不透水地面比例的增加,系統彈性逐漸減小。在高重現期和高不透水地面比例情況下,系統彈性值較低;在10年一遇降雨條件下,區域不透水地面比例增加,系統彈性值下降速度最快。將彈性理念引入城市雨水排水系統中,建立反映系統在應對外界環境變化和災害時的彈性能力評價體系,有助于全面了解雨水排水系統性能,對于雨水排水系統的優化改造以及城市風險管理具有重要意義。Abstract: With the rapid development of urbanization, the pressure of urban drainage and the occurrence of waterlogging is increasing, and enhancing the "resilience" of rainwater drainage systems is an urgent need of urban development. This study selected a certain area of a plain river network city in the Yangtze River Delta as the research object. Based on the calibrated SWMM model and the existing research result, a resilience evaluation model of the rainwater drainage system was established from two aspects: the amount of waterlogging, and the duration of the system. We ran the model under different rainfall scenarios to analyze the resilience of the rainwater drainage system in the study area. The results show that as the rainfall intensity increases, the system resilience gradually decreases,which means that there is a negatiue linear correlation between the system resilience value and the increase in rainfall intensity. Under the conditions of low recurrence period, the decrease in resilient value is relatively smaller with the increase of rainfall intensity. The larger the recurrence period, the faster the decrease rate of system resilient value. Under the same rainfall recurrence period, as the proportion of impermeable ground increases, the system resilience gradually decreases. In the case of high recurrence period and high proportion of impermeable ground, the system resilient value is relatively lower; under the condition of rainfall with a return period of 10 years, the proportion of impermeable ground in the region increases, and the system's resilient value decreases the fastest. Introducing the concept of resilience into urban rainwater drainage systems and establishing an evaluation system that reflects the resilience of the system in response to external environmental changes and disasters can help comprehensively understand the performance of rainwater drainage systems. It is of great significance for the transformation and optimization of rainwater drainage systems and helpful for urban risk management.
-
[1] ZHOU X, BAI Z, YANG Y. Linking trends in urban extreme rainfall to urban flooding in China[J]. International Journal of Climatology, 2017, 37(13): 4586-4593. [2] GUPTHA G C, SWAIN S, Al-ANSARI N, et al. Evaluation of an urban drainage system and its resilience using remote sensing and GIS[J]. Remote Sensing Applications-Society and Environment, 2021, 23: 100601. [3] 鄭濤, 孫斌棟, 王藝曉. 區域一體化視角下的彈性城市評價:以長江三角洲地區為例[J]. 地理科學, 2022, 42(5):863-873. [4] CASAL C A, SADR S, FU G, et al. Reliable, resilient and sustainable urban drainage systems: an analysis of robustness under deep uncertainty[J]. Environmental Science & Technology, 2018, 52(16): 9008-9021. [5] ZHANG L, CHEN X, QIAN H. Diagnosis of resilience to flood hazard in lower reaches of the Beijiang River[J]. Journal of Hydraulic Engineering, 2011(9):1129-1134. [6] 許濤, 王春連, 洪敏. 基于灰箱模型的中國城市內澇彈性評價[J]. 城市問題, 2015(4):2-11. [7] YANG W, ZHANG J. Assessing the performance of gray and green strategies for sustainable urban drainage system development: a multi-criteria decision-making analysis[J]. Journal of Cleaner Production, 2021, 293: 126191. [8] FRANCIS R, BEKERA B. A metric and framework for resilience analysis of engineered and infrastructure systems[J]. Reliability Engineering and Analysis of Engineered and Infrastructure Systems, 2014, 121:90-103. [9] GUPTHA G C, SWAIN S, Al-Ansari N, et al. Assessing the role of SuDS in resilience enhancement of urban drainage system: a case study of Gurugram City, India[J]. Urban Climate, 2022, 41: 101075. [10] LIU D, CHEN X, TEDDY N. Resilience assessment of water resources system[J]. Water Resources Management, 2012, 26(13): 3743-3755. [11] 柯慶, 王林森, 陶濤. 城市雨水排水系統恢復力評估[J]. 中國給水排水, 2016, 32(21): 6-11. [12] DONG X, ZENG S. Enhancing future resilience in urban drainage system: green versus grey infrastructure[J]. Water Research. 2017, 124: 280-289. [13] 王琳,陳天. 濱海地區城市水安全彈性分析:以中國112個城市為例[J]. 城市問題,2017(9):39-47. [14] 李樹平. 雨水管理模型SWMMH(5.0版)用戶手冊[A]. 上海: 同濟大學環境科學與工程學院, 2011. [15] 康得軍, 邱福杰, 溫儒杰, 等. 基于SWMM的LID參數局部與全局敏感性分析[J]. 中國給水排水,2023, 39(17):131-138. [16] 劉興坡. 基于徑流系數的城市降雨徑流模型參數校準方法[J]. 給水排水, 2009, 45(11):213-217. [17] 劉興坡, 劉遂慶, 李樹平,等. 鎮江市主城區排水管網計算機建模方法[J]. 中國給水排水, 2007(11):42-46. [18] YIN J, YAN D, YANG Z, et al. Projection of extreme precipitation in the context of climate change in Huang-Huai-Hai region, China[J]. Journal of Earth System Science, 2016, 125(5): 417-429.
點擊查看大圖
計量
- 文章訪問數: 11
- HTML全文瀏覽量: 1
- PDF下載量: 2
- 被引次數: 0